Optimization with stochastic preferences based on a general class of scalarization functions

نویسندگان

  • Nilay Noyan
  • Gábor Rudolf
چکیده

Abstract: It is of crucial importance to develop risk-averse models for multicriteria decision making under uncertainty. A major stream of the related literature studies optimization problems that feature multivariate stochastic benchmarking constraints. These problems typically involve a univariate stochastic preference relation, often based on stochastic dominance or a coherent risk measure such as conditional value-at-risk (CVaR), which is then extended to allow the comparison of random vectors by the use of a family of scalarization functions: All scalarized versions of the vector of the uncertain outcomes of a decision are required to be preferable to the corresponding scalarizations of the benchmark outcomes. While this line of research has been dedicated almost entirely to linear scalarizations, the corresponding deterministic literature uses a wide variety of scalarization functions that, among other advantages, offer a high degree of modeling flexibility. In this paper we aim to incorporate these scalarizations into a stochastic context by introducing the general class of min-biaffine functions. We study optimization problems in finite probability spaces with multivariate stochastic benchmarking constraints based on min-biaffine scalarizations. We develop duality results, optimality conditions, and a cut generation method to solve these problems. We also introduce a new characterization of the risk envelope of a coherent risk measure in terms of its Kusuoka representation as a tool towards proving the finite convergence of our solution method. The main computational challenge lies in solving cut generation subproblems; we develop several mixed-integer programming formulations by exploiting the min-affine structure and leveraging recent advances for solving similar problems with linear scalarizations. We conduct a computational study on a well-known homeland security budget allocation problem to examine the impact of the proposed scalarizations on optimal solutions, and illustrate the computational performance of our solution methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Solution Approaches for Employee Shift Scheduling Problems in Service Sectors (RESEARCH NOTE)

Today, workforce scheduling programs are being implemented in many production and service centers. These sectors can provide better quality products and/or services to their customers, taking into account employees’ desires and preferences in order to increase sector productivity. In this study, an employee shift scheduling problem in the service sector is discussed. In the problem, the aim is ...

متن کامل

A multi-stage stochastic programming for condition-based maintenance with proportional hazards model

Condition-Based Maintenance (CBM) optimization using Proportional Hazards Model (PHM) is a kind of maintenance optimization problem in which inspections of a system relevant to its failure rate depending on the age and value of covariates are performed in time intervals. The general approach for constructing a CBM based on PHM for a system is to minimize a long run average cost per unit of time...

متن کامل

Centre for Economic and Financial Research at New Economic School Scalarization Methods and Expected Multi - Utility Representations

I characterize the class of (possibly incomplete) preference relations over lotteries which can be represented by a compact set of (continuous) expected utility functions that preserve both indifferences and strict preferences. This finding contrasts with the representation theorem of Dubra, Maccheroni and Ok (2004) which typically delivers some functions which do not respect strict preferences...

متن کامل

A class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions

 In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...

متن کامل

Computing Efficient Solutions of Nonconvex Multi-Objective Problems via Scalarization

This paper presents a new method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the scalar optimization problem constructed by using these functions, enables to compute complete set of weakly efficient, efficient, and properly efficient solutions of multi-objective optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016